A Global History of Physics

Welcome to essays in A Global History of Physics, where I discuss people, ideas, philosophy and technology involved in the development of physics across the world

  1. Engineering Civilizations
  2. Physics Portal of Aristotle
  3. Maths, Mechanics & Eureka
  4. Hero’s Journey in Mechanics
  5. Eunice Newton Foote: Activist, Climate Scientist & Inventor
  6. C. V. Raman as a Science Communicator: A Historical Perspective
  7. Gerhard Herzberg (1904–1999): A Pioneer in Molecular Spectroscopy

Some aspects of the essays are written as part of my podcast, and some are published as essays in journals and magazines. The intention is to eventually collate them into book(s). You are free to use it for educational and non-commercial purposes with attribution.

Engineering Civilizations

1.    Introduction:

Welcome to essays in the global history of physics, where we discuss people, ideas and technology connected to physics in the historical context. Let me explain why the global history of physics is important. Physics, as you know, is one of the central disciplines of natural sciences from which various branches of science and technology have emanated.

Understanding the evolution of such an important output of human thought is imperative. It not only gives us a glimpse of how people over the ages have thought about ideas but also reveals how those ideas are connected to philosophical and technological questions that were of interest to people in the past. In fact, it is that dual connection of physics to philosophy and technology that makes it interesting, important and intellectually rich.

This series of essays aims to capture the historical evolution of physics by paying attention to the global evolution of the subject. In doing so, we will visit the people from the past and learn about their ideas and technologies that eventually led to the topics within physics. 

Here, I need to emphasize the global aspect of history. Conventionally, the history of science as a discipline has been criticized for being Eurocentric in nature. In recent years, as highlighted by James Poskett’s excellent book Horizons (1), there has been an emerging scholarship in the history of science to reveal a decentralized evolution of science and that includes some developments in physics itself. In these essays, I will give credit to people, ideas and technology irrespective of their origin and emphasize curiosity as a basic human instinct prevalent across space and time.

This thought reinforces science, specifically physics, as a global intellectual pursuit over many ages and times. The way I will do this is to take on a particular branch of physics and discuss its evolution in chronological order. Of course, my aim is not to cover everything that is known but to highlight some interesting developments in that field with attention to some interesting people, ideas, tools and technologies at the relevant place and time.

Such an exercise cannot be done in one single essay. So, I intend to cover the chronological evolution with a series of essays spanning all the branches of physics. Yes, it will be a long journey, and I hope you will accompany me in this one endeavor.

2.    How a physical phenomenon is explained.

 One starts with a concrete situation of a particular problem. Associated with this situation is a general law. One applies the general law to the situation in a logical manner and utilizes mathematical descriptions where precision is needed. This logical and mathematical description leads to an explanation witha concrete prediction. Observations must test this prediction. The ability to predict a future observation is one of the remarkable traits of science in general and physics in particular (2). It is through this ability to predict that one can envisage the utility of a physical concept. That utility forms the seed of development towards technology.

As you may observe, there is a nice connection between scientific inquiry and the eventual realization of technology. This connection is what makes science and technology go hand in hand. Importantly, this is one of the outstanding features of physics and historical explanation, as we intend to do in these essays, which will justify the claim.

This connection between science and technology is not a one-way coupling. In fact, many interesting questions in physics have emerged out of technological development across various eras of human history. This recognition of jugalbandhi between science and technology is at the heart of the essay series.

Physics has played a critical role in engineering civilization over the centuries. This role has been explicit in recent times, say around the last 300 years or so. But what is interesting is that inquiries in physical sciences have implicitly influenced the growth of a civilization.

This growth is not only materialistic but also intellectual in nature. Therefore, understanding the evolution of physics gives us a glimpse of the evolution of humankind. Of course, it may not be the complete picture, but at least we learn about people, ideas and technology that gave rise to the world that we identify as a physical, real entity.

3.    Engineering Civilizations

Let us start with some ancient civilizations. The oldest tools used by humans were stones. In fact, the ‘Stone Age’ gets its name from this. According to archeological explorations, the earliest stone tools found in Lomekwi, Kenya, date back to 3.3 million years ago (3). This is the Paleolithic age, in which hunting and gathering were the main occupations of human beings. The stone tools found within India at Attirampakkam, a village close to Chennai in Tamil Nadu, date back to around 300 thousand years ago (4). From such archeological evidence, humans were acquainted with toolmaking long ago. Towards the Neolithic age, we also have evidence of pottery in civilizations, indicating a gradual change to farming and agricultural occupations that were assisted by toolmaking based on clay and fire.  I need to emphasize that knowledge of these tools was handed over from one generation to another without a formal writing process. The oldest written record dates to around 3500 BCE in the form of a cuneiform script from Mesopotamian civilization, which is somewhere around present-day Iraq (2). Such writing itself needs small tools, such as a stylus and a platform, such as clay, to imprint the written text. Well before any form of writing became part of any civilization, tools and structures had to be invented.

An interesting element of the Indus Valley Civilization was that they used measurement scales (5). In the Harappan museum, one can find a linear scale made of a shell that has nine divisions with a small circle engraved on it. A periodically divided scale indicates a quantitative measure of length and indicates the sophistication of thought, both from device and utility viewpoints.

A remarkable aspect of this scale is the utility of the shell as the material. Given that shells are robust and can sustain large temperature fluctuations, they make for an excellent choice as a material for scale. One must really marvel at how humans came to the point where such a design was implemented without modern tools, scientific knowledge or a written script.

To emphasize this fact, one of the earliest texts from the Indus Valley civilization dates to around 3000 BCE. Of course, in this case, the script is yet to be deciphered completely. What is interesting is that ancient civilizations achieved remarkable engineering feats even before any formalization of scientific disciplines, including physics, came into the picture.

This is because for civilization to survive, grow and sustain, they had to manage their natural resources and construct structures. These tasks would not have been feasible without an intricate understanding of how things work and how they can be used to construct physical structures. This can be achieved only through certain tools and techniques.

The civilizations would not have evolved without this engineering and, therefore, deserve credit as a human achievement. These tools and techniques have implicit physics in them. Of course, there was no formal discipline called physics until around 300 BCE, but the empirical knowledge about tools and techniques for construction was already present long before physics became a formal discipline of science.

4.   The role of philosophy

As human beings cultivated crops, their mobility was confined to a smaller region compared to the hunter-gatherer era. This settlement at a place gave humans leisure to think and wonder about nature. As a consequence of this thinking, philosophical thoughts emerged (6).

Questions pertaining to philosophy, such as what life is and how humans live and interact with nature, occupied human minds. This exploratory era also gave rise to the need to understand the world, explore nature and harness it. Inquiries pertaining to the motion of celestial objects and that of common living and non-living things captured the attention.

To understand the intellectual foundations of physics, one needs to understand its connection to philosophy in general and philosophy of science in particular. The connection between reality and physical law is through an abstract formulation (2). Reality has its own complications, and a physical law retains only a small set of the complications that are evident in reality.

Although this connection between reality and a physical law looks to be straightforward, historically, there has been a large intellectual struggle to come to this point. It has not been an obvious task to connect reality to physical laws. And by studying the history of physics, it is evident that the route has been anything but smooth.

Another important aspect I need to emphasize is how reality becomes a raw material for scientific investigation. In essence, reality provides a kind of formless raw material on which physical laws can be formulated. These physical laws are drawn from a simplified structure of reality, and there is a process of encoding reality in a language that is amenable to scientific investigation.

This process of going from a multi-faceted reality to a slightly more precise physical law is done through assumptions, and these assumptions play a critical role. The pathway from reality to general laws has been through inductive methods, at least in the historical context. In the inductive method, there is an extrapolation from the finite to the general principles.

Based on certain observations in a concrete situation, one derives a general law. Now, the question is, how does one derive such a general law? This generalization is based on a logical process, and one of the best tools to implement logical analysis is mathematics. This is where the role of mathematics becomes so important in physics. If one needs to go from a concrete, realistic situation to an abstract principle, one will have to utilize mathematical tools such as geometry to convert the reality into an abstract formulation. An important aspect of physics and science, in general, is that once this abstract formulation has been postulated, the physical law can be tested going forward. The results can be checked by performing observations, and these observations can confirm or reject the induced hypothesis.

When it comes to the observation, there are two elements. The first is the observed object, and the second is the observer themselves. The demarcation between the observer and the observed object seems trivial; historically, it has not been the case. Because the observed object can interact with the observer, the physical laws that are derived from such observations must ensure that the observers themselves are not perturbing the physical reality. 

Also, the judgment of objectivity itself is a complex process because the criteria of truth have a social connection. This means what we call a factor of truth is closely connected to the social realities in which the observation is performed. This social connection brings in another layer of complication, and one must understand the philosophy behind these processes. 

As you can see, formulating science and, in our case, physics has not been a trivial task, given that these philosophical questions must be addressed to get a satisfactory answer. Understanding and discriminating science from other forms of human activity has not been a trivial exercise either, but it is with the help of philosophy that progress has been made.

This also highlights the intricate connection between philosophy, physics, experimental observation and technological developments as a network of events that interact with each other. Each part of this network plays a critical role and, many times, feeds back important information in the process. Therefore, to understand physics, we need to not only appreciate the philosophical questions but also be aware of technological developments.

Because many of the developments in the realm of scientific philosophy were motivated by technology and vice versa, this is also the reason why the history of physics is so interesting. It brings together all these epistemological components into one single platform and creates an intellectual magic that has played a critical role in understanding nature and the universe, that which can be observed and, in some cases, that which cannot be observed.

So, how did ancient people think about a subject called physics? What were the initiating thoughts of philosophers that led to physics? If we want to address these questions, we need to pay attention to some of the philosophers who thought and wrote about science. Among them, one of the earliest to do so was Aristotle. In the next essay, we will discuss his physics. 

References:

[1]       J. Poskett, Horizons: A Global History of Science. Penguin UK, 2022.

[2]       K. Simonyi, A Cultural History of Physics, 1st edition. Boca Raton, Fla: A K Peters/CRC Press, 2012.

[3]       “Lomekwi Stone Tools: the oldest artifact in the world.” Accessed: Mar. 24, 2025. [Online]. Available: https://www.thearchaeologist.org/blog/lomekwi-stone-tools-the-oldest-artifact-in-the-world

[4]       S. Pappu, Y. Gunnell, M. Taieb, J. Brugal, and Y. Touchard, “Excavations at the Palaeolithic Site of Attirampakkam, South India: Preliminary Findings,” Curr. Anthropol., vol. 44, no. 4, pp. 591–598, 2003, doi: 10.1086/377652.

[5]       S. Guha, A History of India through 75 Objects. Hachette UK, 2022.

[6]       P. Adamson, Classical Philosophy: A history of philosophy without any gaps, Volume 1. in A History of Philosophy. Oxford, New York: Oxford University Press, 2014.

All Episodes

Pratidhvani – Humanizing Science

(also on YouTube, Spotify, Apple podcast)

Namaste, Hola, & Welcome from G.V. Pavan Kumar.

Pratidhvani (ಪ್ರತಿಧ್ವನಿ/प्रतिध्वनि) means reflection or resonance (of sound). Here, the aim of the podcast is to resonate with knowledge & humanize science.
The podcast has two themes:
1) History & Philosophy of Physical Sciences & Technology,
2) Conversations with people related to their intellectual journey & themes mentioned in 1)
Below is the link to all the episodes. Italicized ones are solo episodes

  1. Pratidhvani – Introduction
  2. Inspirations from Japan
  3. Six Jugalbandis of Scientific Research
  4. Science, Rationality and Compassion
  5. Ashkin’s Story – no prize to Nobel prize
  6. Importance of Failed Experiments
  7. Two Chandrasekhars and their students
  8. Gripping History of Laser Invention
  9. Conversation with Aditi Sen (De)
  10. Conversation with Sutirth Dey
  11. Conversation with Seema Sharma
  12. Conversation with Nagaraj Balasubramanian
  13. Conversation with Saptarshi Basu
  14. Conversation with Amitabh Joshi
  15. Conversation with Ranjini Bandyopadhyay
  16. An Indian Prof’s 15 lessons
  17. Conversation with E Arunan
  18. Conversation with Kaneenika Sinha
  19. Conversation with Arindam Ghosh
  20. Conversation with M.S. Santhanam
  21. Conversation with Biman Nath
  22. Conversation with Vishwesha Guttal
  23. Conversation with Sudeshna Sinha
  24. Conversation with Dibyendu Nandi
  25. Conversation with Kasturi Saha
  26. Conversation with Sourabh Dube
  27. Conversation with Srabanti Chaudhury
  28. Conversation with Nirmalya Kajuri
  29. Conversation with Jasjeet Singh Bagla
  30. Conversation with Angshuman Nag
  31. Conversation with Nirmal Raj
  32. Let go… the ego!
  33. A call from Varanasi
  34. 6 reasons why I do Science
  35. Conversation with Neeldhara Misra
  36. Conversation with Ashish Arora
  37. Conversation with Shivakumar Jolad
  38. Conversation with Atikur Rahman
  39. Conversation with Susmita Adhikari
  40. Conversation with Suresh Govindarajan
  41. Conversation with B. Ananthanarayan
  42. Conversation with Akhlesh Lakhtakia
  43. Conversation with Anisa Chorwadwala
  44. Conversation with Deepak Dhar
  45. Leonardo, Rayleigh & Blue Sky research
  46. Conversation with Sandhya Koushika
  47. Conversation with Umakant Rapol
  48. Conversation with Jayant Murthy
  49. Heaviside को Maxwellian क्यों कहा जाता है?
  50. Conversation with Sudipta Maiti
  51. Conversation with Snigdha Thakur
  52. Conversation with Mayurika Lahiri
  53. Conversation with Sundar Sarukkai
  54. Conversation with Dibakar Roy Chowdhury
  55. Conversation with Arnab Mukherjee
  56. Conversation with Devapriya Chattopadhyay
  57. Conversation with Venu Gopal Achanta
  58. Conversation with Guruswamy Kumaraswamy
  59. Conversation with Pushkar Sohoni
  60. Conversation with Neeraja Dashaputre
  61. Conversation with Sreejith G.J.
  62. Sadi Carnot & Thermodynamics
  63. Masterpiece: The Book of Optics by al-Haytham
  64. CV Raman and Quantum Mechanics
  65. Conversation with Jeevanjyoti Chakraborty
  66. Conversation with Sivarama Krishnan
  67. Conversation with Pramod Pillai
  68. Conversation with Joy Mitra
  69. Conversation with Joyee Ghosh
  70. Conversation with Harinath Chakrapani
  71. Conversation with Sunil Nair
  72. Conversation with Urbasi Sinha
  73. Conversation with Anindita Bhadra
  74. Conversation with Anindya Datta
  75. Conversation with Subhankar Bedanta
  76. Conversation with Ganesh Bagler
  77. Conversation with Chinmay Tumbe
  78. Conversation with Gautam Menon
  79. Gerhard Herzberg – scientific life
  80. Conversation with Chaitra Redkar
  81. Conversation with Aninda Sinha
  82. Conversation with Bhaskaran Muralidharan
  83. Conversation with Ayan Banerjee
  84. Why Read Books in the age of the internet?
  85. Conversation with Sangeeta Kale
  86. Conversation with Siddharth Tallur
  87. Conversation with Karishma Kaushik
  88. Conversation with Samrat Mukhopadhyay
  89. Conversation with Vivek Polshettiwar
  90. Listening spell-bound to Prof. Raman
  91. Conversation with Vinita Gowda
  92. Science + History = ??
  93. GHoP 001 Engineering Civilizations
  94. GHoP 002 Physics Portal of Aristotle
  95. Conversation with K. Sridhar
  96. GHoP 003 Maths, Mechanics & Eureka
  97. Physics & Pratidhvani
  98. Conversation with Bejoy Thomas
  99. Conversation with Vijaykumar Krishnamurthy
  100. GHoP 004 Hero’s Journey in Mechanics
  101. Conversation with Shubashree Desikan
  102. Conversation with Vipul Dutta
  103. Conversation with Robert T. Pennock
  104. Conversation with Shivprasad Patil
  105. Conversation with Kollegala Sharma
  106. Conversation with Arka Banerjee
  107. Conversation with Aparna Deshpande
  108. Conversation with Amit Agarwal
  109. Conversation with Vijay Chikkadi
  110. Conversation with Jyotishman Dasgupta
  111. Conversation with A.R.Venkatachalapathy
  112. Conversation with Satish Patil
  113. Daniel Dennett on Criticism
  114. Conversation with Chaitanya Athale
  115. Icons of Science in India – some thoughts
  116. Conversation with Srubabati Goswami
  117. Conversation with Krishnendu Sengupta

Conversation with Sangeeta Kale

Sangeeta is a materials physicist, Professor and Dean at Defence Institute of Advanced Technology (DIAT) Pune

(DIAT is a University supported by the Ministry of Defence, India)

She is also the Co-Director and Founder of Navyukti Innovations Private Limiteda start-up company working on Sensor Development and Healthcare Solutions.

In this episode, we explore her intellectual journey so far.

Youtube

Relevant links:

1. Google Scholar: https://scholar.google.co.in/citations?user=BMoKpTQAAAAJ&hl=en

2. LinkedIn: https://www.linkedin.com/in/sangeeta-kale-69046720b/

3. Orcid ID: https://orcid.org/0000-0002-5842-0310?lang=en

4. Company Website: https://www.navyuktiinnovations.com/

5. Facebook: https://www.facebook.com/sangeeta.kale.3

6. Blog: https://sangeetakale.wordpress.com/

7. Research Lab Website: https://snkalelab.wixsite.com/snkalelab

Conversation with Bhaskaran Muralidharan

Bhaskaran is an Electrical Engineer & a Professor at the Indian Institute of Technology Bombay: https://cnqt-group.org/?page_id=25

He is a quantum transport theorist, musician and long-distance runner.

We explore his intellectual, musical and running journey.

Also, don’t miss a segment on Bhaskaran playing the piano.

References:

  1. “Bhaskaran Muralidharan [Department of Electrical Engineering IIT Bombay].” Accessed November 26, 2024. https://www.ee.iitb.ac.in/wiki/faculty/bm.
  2. “‪Bhaskaran Muralidharan – ‪Google Scholar.” Accessed November 26, 2024. https://scholar.google.co.in/citations?user=PWFVEKIAAAAJ&hl=en.
  3. “Group Members – CNQT @ IIT Bombay.” Accessed November 26, 2024. https://cnqt-group.org/?page_id=25.
  4. Muralidharan, B., A. W. Ghosh, and S. Datta. “Probing Electronic Excitations in Molecular Conduction.” Physical Review B 73, no. 15 (April 10, 2006): 155410. https://doi.org/10.1103/PhysRevB.73.155410.
  5. Prof. Bhaskaran Muralidharan || Electrical Engineering || EESA IIT Bombay, 2021. https://www.youtube.com/watch?v=O8fFdb3-NRQ.