All Episodes

Pratidhvani – Humanizing Science

Namaste, Hola, & Welcome from G.V. Pavan Kumar.

Pratidhvani (ಪ್ರತಿಧ್ವನಿ/प्रतिध्वनि) means reflection or resonance (of sound). Here, the aim of the podcast is to resonate with knowledge & humanize science.
The podcast has two themes:
1) History & Philosophy of Physical Sciences & Technology,
2) Conversations with people related to their intellectual journey & themes mentioned in 1)
Below is the link to all the episodes. Italicized ones are solo episodes

  1. Pratidhvani – Introduction
  2. Inspirations from Japan
  3. Six Jugalbandis of Scientific Research
  4. Science, Rationality and Compassion
  5. Ashkin’s Story – no prize to Nobel prize
  6. Importance of Failed Experiments
  7. Two Chandrasekhars and their students
  8. Gripping History of Laser Invention
  9. Conversation with Aditi Sen (De)
  10. Conversation with Sutirth Dey
  11. Conversation with Seema Sharma
  12. Conversation with Nagaraj Balasubramanian
  13. Conversation with Saptarshi Basu
  14. Conversation with Amitabh Joshi
  15. Conversation with Ranjini Bandyopadhyay
  16. An Indian Prof’s 15 lessons
  17. Conversation with E Arunan
  18. Conversation with Kaneenika Sinha
  19. Conversation with Arindam Ghosh
  20. Conversation with M.S. Santhanam
  21. Conversation with Biman Nath
  22. Conversation with Vishwesha Guttal
  23. Conversation with Sudeshna Sinha
  24. Conversation with Dibyendu Nandi
  25. Conversation with Kasturi Saha
  26. Conversation with Sourabh Dube
  27. Conversation with Srabanti Chaudhury
  28. Conversation with Nirmalya Kajuri
  29. Conversation with Jasjeet Singh Bagla
  30. Conversation with Angshuman Nag
  31. Conversation with Nirmal Raj
  32. Let go… the ego!
  33. A call from Varanasi
  34. 6 reasons why I do Science
  35. Conversation with Neeldhara Misra
  36. Conversation with Ashish Arora
  37. Conversation with Shivakumar Jolad
  38. Conversation with Atikur Rahman
  39. Conversation with Susmita Adhikari
  40. Conversation with Suresh Govindarajan
  41. Conversation with B. Ananthanarayan
  42. Conversation with Akhlesh Lakhtakia
  43. Conversation with Anisa Chorwadwala
  44. Conversation with Deepak Dhar
  45. Leonardo, Rayleigh & Blue Sky research
  46. Conversation with Sandhya Koushika
  47. Conversation with Umakant Rapol
  48. Conversation with Jayant Murthy
  49. Heaviside को Maxwellian क्यों कहा जाता है?
  50. Conversation with Sudipta Maiti
  51. Conversation with Snigdha Thakur
  52. Conversation with Mayurika Lahiri
  53. Conversation with Sundar Sarukkai
  54. Conversation with Dibakar Roy Chowdhury
  55. Conversation with Arnab Mukherjee
  56. Conversation with Devapriya Chattopadhyay
  57. Conversation with Venu Gopal Achanta
  58. Conversation with Guruswamy Kumaraswamy
  59. Conversation with Pushkar Sohoni
  60. Conversation with Neeraja Dashaputre
  61. Conversation with Sreejith G.J.
  62. Sadi Carnot & Thermodynamics
  63. Masterpiece: The Book of Optics by al-Haytham
  64. CV Raman and Quantum Mechanics
  65. Conversation with Jeevanjyoti Chakraborty
  66. Conversation with Sivarama Krishnan
  67. Conversation with Pramod Pillai
  68. Conversation with Joy Mitra
  69. Conversation with Joyee Ghosh
  70. Conversation with Harinath Chakrapani
  71. Conversation with Sunil Nair
  72. Conversation with Urbasi Sinha
  73. Conversation with Anindita Bhadra
  74. Conversation with Anindya Datta
  75. Conversation with Subhankar Bedanta
  76. Conversation with Ganesh Bagler
  77. Conversation with Chinmay Tumbe
  78. Conversation with Gautam Menon
  79. Gerhard Herzberg – scientific life
  80. Conversation with Chaitra Redkar
  81. Conversation with Aninda Sinha
  82. Conversation with Bhaskaran Muralidharan
  83. Conversation with Ayan Banerjee
  84. Why Read Books in the age of the internet?
  85. Conversation with Sangeeta Kale
  86. Conversation with Siddharth Tallur
  87. Conversation with Karishma Kaushik
  88. Conversation with Samrat Mukhopadhyay
  89. Conversation with Vivek Polshettiwar
  90. Listening spell-bound to Prof. Raman
  91. Conversation with Vinita Gowda
  92. Science + History = ??
  93. GHoP 001 Engineering Civilizations
  94. GHoP 002 Physics Portal of Aristotle
  95. Conversation with K. Sridhar
  96. GHoP 003 Maths, Mechanics & Eureka
  97. Physics & Pratidhvani
  98. Conversation with Bejoy Thomas
  99. Conversation with Vijaykumar Krishnamurthy
  100. GHoP 004 Hero’s Journey in Mechanics
  101. Conversation with Shubashree Desikan
  102. Conversation with Vipul Dutta
  103. Conversation with Robert T. Pennock
  104. Conversation with Shivprasad Patil
  105. Conversation with Kollegala Sharma
  106. Conversation with Arka Banerjee
  107. Conversation with Aparna Deshpande
  108. Conversation with Amit Agarwal
  109. Conversation with Vijay Chikkadi
  110. Conversation with Jyotishman Dasgupta
  111. Conversation with A.R.Venkatachalapathy
  112. Conversation with Satish Patil

Book alert – Science, Pseudoscience, and the Demarcation Problem

There is a new book (88 pages) on the philosophy of science that discusses the demarcation problem between science and pseudoscience. The topics look interesting, and have relevance in a day and age where science has been appropriated for various purposes, including spirituality.

One will have to ask how to differentiate science from something that may sound like science but, with further exploration, turns out to be a hoax?

This book tries to address this issue from a philosophical viewpoint.

The book is free to read for 2 weeks (starting 9th March 2025).

FOLLOW THE MONEY – A useful model

Our world is a place with complex ideas superimposed on people with ever-changing attention. Complex ideas are complex because they depend on multiple parameters. If something changes in the world, then that change can occur due to multiple reasons.

Unlike a carefully designed physics experiment, there are too many ‘hidden variables’ in human life and behavior, especially when they act collectively. In such a situation, it is pertinent to search for models to understand the complex world. Models, by definition, capture the essence of a problem and do not represent the complete system. They are like maps, zoomed out, but very useful if you know their limitations. I keep searching for mental models that will help me understand the complex world in which I live, interact, and comprehend.

Among many models, one of them that I use extensively is the follow-the-money model. This model explains some complex processes in a world where one does not have complete information about a problem. 

Take, for example, the incentives to choose a research project. This is a task that as scientists, we need to do very often. In the process of choosing a project to work on, researchers have to factor in the possibility of that research being funded prior to the start of the project. This is critical for scientific research that is dependent on infrastructure, such as experimental sciences, including physics, chemistry, and biology. Inherently, as researchers, we tend to pick a topic that is at the interface of personal interest, competence, relevance, and financial viability.

The viability is an important element because sustained funding plays a critical role in our ability to address all the contours of a research project. Thus, as scientists, we need to follow the money and ask ourselves how our research can be adapted to the financial incentives that a society creates. A case in point is research areas such as AI, where many people are aware of its potential and, hence, support from society and an opportunity to utilize the available incentive.

It is important for the public to be aware of this aspect of research where the financial incentive to execute a project plays a role in the choice of the project itself. The downstream of this incentive is the opportunity to employ more people. This means large funding projects and programs attract more researchers. More people in the research area generate more data, and more data, hopefully, will result in more knowledge in the chosen research area. This shows how financial incentives play a critical role in propelling a research area. In that sense, the ‘follow the money’ model has a direct correlation with more researchers flocking towards a research area.

The downside of this way of functioning is that it skews people towards certain areas of research at the cost of another research area which may not find financial support from the society. This is a topic that is generally not discussed in science classes, especially at the undergraduate and research level but I think we should discuss with students about this asymmetry as their futures are dependent on financial support that they can garner.

Broadening the scope further, the ‘follow the money’ model is useful to understand why a certain global trend rises or falls. A contemporary global upheaval is the situation of war in Ukraine and Gaza. At first sight, it looks like these wars are based on ideologies, but a closer look reveals that these wars cannot be fought without financial support. Such underpinning of the money running the war reveals patterns in geopolitics that are otherwise not easy to grasp.

Ideologies have the power to act as vehicles of human change, but these vehicles cannot be propelled without the metaphorical fuel – that is, money. The ‘follow-the-money’ model can show some implicit motivation and showcase how ideologies can be used as trojan horses to gain financial superiority either through captured resources or through showcasing the ability to capture that resource. Following money is also a very powerful and useful model for understanding many cultural, sociological and political evolution, even in a complex country like India and other South Asian countries. I leave it as an intellectual assignment for people who want to explore it 😊. You will be surprised how effective it can be in explaining many complex issues, provided we know the limitations of the model. 

As I mentioned earlier, a model is like a map. It is limited by resolution, the dimension and the viewpoint. But they are useful for navigating a complex world.

Conversation with Chaitra Redkar

Chaitra is a political scientist, Associate Professor & Chair of Humanities at IISER Pune – https://www.iiserpune.ac.in/research/department/humanities-and-social-sciences/people/faculty/regular-faculty/chaitra-redkar/326

She explores modern Indian political thought through the lens of philosophy and history.

In this episode, we discuss her intellectual journey in capturing an interesting trinity.

References:

  1. “Chaitra Redkar – IISER Pune.” Accessed November 8, 2024. https://www.iiserpune.ac.in/research/department/humanities-and-social-sciences/people/faculty/regular-faculty/chaitra-redkar/326.
  2. Redkar, Chaitra. Gandhian Engagement with Capital. First Edition. New Dehli: SAGE Publications India Pvt Ltd, 2019.
  3. X (formerly Twitter). “Chaitra Redkar (@R_Chaitra) / X,” April 9, 2023. https://x.com/r_chaitra.
  4. “Amazon.In.” Accessed November 8, 2024. https://www.amazon.in/Books-Chaitra-Redkar/s?rh=n%3A976389031%2Cp_27%3AChaitra+Redkar.
  5. “Chaitra (@my_historical_horizon) • Instagram Photos and Videos.” Accessed November 12, 2024. https://www.instagram.com/my_historical_horizon/.

Open access : a few thoughts and books

I think that knowledge, especially academic knowledge, should be openly accessible to fellow researchers and the public. Given that most of the academic research in India is public-funded, it is imperative that our work is made available for anyone interested in reading and utilizing the knowledge. This makes a strong case for making our work open to access. Unfortunately, the open-access publication venture has been hijacked by some commercial publishers, who have misused the enthusiasm of academic researchers by converting it into a money-making opportunity via so-called ‘gold’ open-access models, where authors pay exorbitant article processing charges (APCs) to publish their work in the journals.

I have been searching literature to understand the philosophy and economics of open-access publishing models, and recently, by chance, I came across a couple of books by Peter Suber.

First is an open-access book on Open Access. Peter Suber has been a philosopher & open-access advocate for a long time. In this book, he explains what it really means to have open access to knowledge & the related philosophy, including its economics. Link to the book.

Second is a collection of writings on open-access publication (link), and as the online blurb says :

Influential writings make the case for open access to research, explore its implications, and document the early struggles and successes of the open access movement.

The green open-access model is very interesting and pertinent to countries such as India, and as per wiki it is defined as :

Green OA, is the practice of placing a version of an author’s manuscript into a repository, making it freely accessible for the scientific community.

The primary motivation of Open Access was
to provide Open Access to Knowledge to the READER of Publications and; to allow Open Access to AUTHORS Publication (unbiased publication of Knowledge)

Open access in the true sense, should neither have barriers to knowledge consumption nor to knowledge generation and dissemination. Therefore, APCs are a major hurdle to researchers and authors who do not have monetary support. This is most of the global south, and hence, a fair policy is needed to make it more democratic.

Physics Nobel 2024 – anywhere to everywhere

The Nobel Prize in Physics 2024 was awarded to John J. Hopfield and Geoffrey E. Hinton “for foundational discoveries and inventions that enable machine learning with artificial neural networks“. There has been much buzz surrounding this prize, especially in the context of whether these discoveries are indeed in the realm of mainstream physics. Many science commentators have questioned the choice and have provocatively dismissed it as ‘not part of mainstream physics’.

This has also brought into focus an important question: What is physics?

This question does not have a simple answer, given the rich history of the subject and its applicability over centuries. What we now call engineering is essentially an extrapolation of thinking in physics. New avenues have branched out from physics that cannot be readily identified as mainstream physics; a case in point is artificial intelligence and machine learning.

One of the aspects of mainstream physics is that the intellectual investment in the contemporary scenario is mainly driven by discoveries happening in the realm of quantum mechanics and general relativity. One of the mainstream problems in physics is to combine quantum mechanics and gravitation, which remains an unresolved task. Therefore, significant attention is paid to understanding these theories and verifying them through experimentation. Other areas and sub-disciplines in physics have become loosely connected to these two important theories.

There is another dimension to physics that is equally important and has vast applications: statistical physics. In statistical physics, the motivation comes from multi-particle systems and their applicability as models to understand our world, including biological systems. One utilizes knowledge from mathematics and statistics, combining them with physical laws to predict, invent and understand new forms and assemblies of matter. This thinking has been extrapolated to abstract assemblies and hence applied to a variety of situations. This approach has led to a revolution in how we can understand the realistic world because a statistical viewpoint is very useful for studying complex systems, such as many-body quantum mechanical aggregates (such as groups of electrons), dynamics of molecules inside a cell and the evolution of the stock market. Statistical physics plays a dominant role in all these situations. It has become a ubiquitous tool, making it difficult to directly connect it to basic principles of physics as taught in college textbooks and classrooms. It reminds me of a saying: if you are everywhere, then you are from nowhere.

This situation leads us back to the question: What is physics? John Hopfield himself offers an interesting definition related to this question, emphasizing that viewpoint is a crucial element. This perspective allows for greater freedom in using physics beyond conventional definitions. Among scientific disciplines, physics is always associated with its depth of understanding. This is a good opportunity to emphasize the breadth of physics, which is equally noteworthy.

In that light, the 2024 Nobel Prize in Physics should be welcomed as an expansion of the horizon of what constitutes physics. In a day and age where basic science has been questioned regarding its applicability to modern-day life and technology, this prize serves as a welcome change to showcase that basic science has played a fundamental role in establishing a contemporary tool of primary importance to society.

This point is particularly important because policymakers and politicians tend to focus on immediate issues and ask how they can influence them by using modern-day technology. Utility is central to this form of thinking. Given that basic sciences are often viewed as ‘not immediately useful’, this viewpoint diminishes the prominence of foundational disciplines: physics, chemistry, biology, and mathematics. In contrast, this prize reinforces the idea that building cutting-edge technology, which holds contemporary relevance and societal impact, has its roots in these foundational disciplines. In that sense, this prize is an important message because, like it or not, the Nobel Prize captures the attention not only of the scientific world but also of the public and, hence, of interest to politicians and policymakers.

Issac Asimov is attributed to have said: “There is a single light of science, and to brighten it anywhere is to brighten it everywhere.” The Nobel Prize in Physics 2024 fits that bill.